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Abstract

This paper introduces a competitive computational approach for determining time-dependent far-field sound gen-

erated by subsonic flows around lifting airfoils. The procedure assumes the linearity of the sound field away from a

bounded region surrounding the airfoil. It is assumed that the sound pressure on the boundary of this enclosed region

(referred to as the Kirchhoff surface) is specified, possibly by another procedure such as solving the full Euler equations.

Away from the Kirchhoff surface, the Euler equations are linearized about a uniform mean flow. It is well known that

linearized Euler equations can be uncoupled into a scalar convective wave equation. However, due to the anisotropy

present in the convective wave equation, it is difficult to compute solutions. In this context, direct numerical simulation

of the convective wave equation requires proper numerical descriptions of far-field boundary conditions which is a non-

trivial task. Moreover, if accurate far-field conditions can be formulated, the computational cost of direct simulation

can be prohibitive even in a modest computational domain. In this paper, we present an alternate solution procedure.

First, the problem is transformed via the Laplace transform (with appropriate initial conditions) into a reduced wave

equation. The convective term in the reduced wave equation is removed using a dependent variable transformation.

Then we use Gothert�s rule, to obtain a Helmholtz like equation with complex wave number, which is subsequently
solved using double layer potential theory. Finally upon application of numerical inverse Laplace transform techniques,

far-field acoustic pressure is obtained as a function of space and time.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The prediction of far-field sound radiation has received a considerable amount of attention in the

computational aeroacoustics community and commonly arises in unsteady external aerodynamic problems
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such as the gust response of airfoils, flutter problems, and jet noise. These problems are commonly posed in

open domains where it is difficult to extend the computational domain to the far field due to the dissipative

and dispersive properties of direct numerical schemes. Thus, several researchers have attacked open domain

problems by splitting the domain into acoustic near- and far-fields. The near-field which is typically

nonlinear may be calculated using a variety of computational techniques available to date. In the far-field,

the linear nature dominates, and, in particular, the linearized Euler equations with constant coefficients

accurately represent the flow field.

A sequence of works developed by Atassi and his coworkers [1–3,5,6] exploit this linear behavior in the
far-field and couple this procedure to the interior numerical scheme. They employ frequency domain nu-

merical simulations (limited to a single frequency harmonic) in the near-field [7,8], and determine the far-

field sound using Kirchhoff techniques. Thus, the driving philosophy of this work is to provide an accurate

near-field numerical simulation coupled with a ‘‘semi-analytical’’ approach to predict the far-field sound.

The work of Atassi et al. [2,3,5,6] uses a Kirchhoff method and modified Green�s function approach wherein
Kirchhoff�s formula is used to predict the far-field sound. In their work, because of numerical difficulties in
calculating the normal pressure derivative on the Kirchhoff surface a modified, approximate Green�s
function was used.
In contrast, the potential-theoretic method is implemented in [18,19] using a single layer potential

method which requires only the free space Green�s function and an unknown single layer density. The
application of this method for determining the far-field acoustics of an airfoil which is subject to an up-

stream harmonic gust was discussed in [18] and [19] in detail. This single layer density is determined using a

technique proposed by Hariharan and MacCamy [4] for electromagnetic scattering problems using a sin-

gular integral equation of the first kind. In this paper, we use double layer potentials, so that a well-posed

second kind integral equation is obtained. The potential-theoretic methods, whether they be single layer or

double layer, have the following advantages:
• Far-field radiation conditions are built in the formulation.

• Unlike other Kirchhoff formulations, potential-theoretic methods do not call for normal derivatives of

pressure on a Kirchhoff surface.

• These methods are easy to implement. Singularities resulting from the formulation are analytically re-

moved.

• Results compare extremely well with semi-analytical and other proven results for radiation of sound pro-

duced by flows around thin airfoils ([18,19]).

• The general geometry of the Kirchhoff surface is not limited to a circle or a sphere as in other Kirchhoff
models.

In this paper, we combine the application of Laplace transforms with results from potential theory to

develop a fast and accurate procedure, referred to as the transform potential-theoretic (TPT) technique, for

the determination of the time-dependent far-field propagation of sound. The complete solution procedure is

as follows: (a) determine the acoustic near-field around the airfoil using a non-reflecting boundary con-

dition [20]; (b) extract the pressure on an artificial boundary, called �the Kirchhoff surface� in the paper; and
(c) then solve the problem in the exterior using the TPT technique. It is assumed that the near-field up to the

Kirchhoff surface, governed by the Euler equations, is obtained using an appropriate solution technique
with accurate radiation boundary conditions. Away from this surface, the field equations can linearized and

reduced to the convective wave equation. We use the Laplace transform and Gothert�s rule to reduce the
convective wave equation to the Helmholtz equation, where initial conditions are properly chosen and

dictated by the physics of the problem. Then, the solution of the problem is sought by the application of

potential theory. We specifically use a double layer potential to describe a fast and efficient procedure. The

double layer potential has the advantage that the resulting kernel function is non-singular. Moreover, the

double layer potential method allows for higher order numerical quadrature rules in the resulting integral

equations. Finally, we invert the transformed solutions to time domain using the techniques proposed in
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[16]. The procedure described in this paper combines the Laplace transform, potential theory and the in-

verse Laplace transform to determine the time-dependent far-field acoustic pressure. The results obtained

through the TPT are compared to the direct numerical simulations with accurate high order boundary

conditions procedure developed by Hagstrom and Hariharan [21]. Sample calculations are presented to

demonstrate the accuracy and the computational efficiency of the TPT technique.

The use of transform methods such as the Laplace transforms advocated here to study time-dependent

wave motions in electromagnetics have been investigated in the context of finite element solutions in the

past [9]. Numerical inversion associated with this type of techniques have been investigated extensively in
the literature [11–14]. For the far field calculations, use of Kirchhoff�s methods are nicely summarized in
[28]. In particular, for the three-dimensional problem, exact time-domain formulation is given. In contrast,

we consider a two-dimensional case for which this formulation is not possible due to the absence of Hu-

ygen�s principle. In a sequence of works by [23–25], the authors demonstrate highly accurate boundary
conditions based on the work by Hagstrom and Hariharan [20] in conjunction with the direct simulation of

far field radiation. Also in the paper by Alpert et al. [27], the authors have provided a novel procedure for

rapid evaluation of non-reflecting boundary kernels for time-dependent wave equations. This work pro-

vides a competitive approach for evaluating exact boundary conditions with less work than that is required
for the local formulation, such as the one proposed in [20]. Use of this method still requires direct simu-

lation and is costly due to the fact that direct methods require large number of nodes to extend the solution

to the far field. These authors also provided an integral evolution formula for the wave equation in [26].

While this method looks promising, no details are yet available for far field calculations.

2. General formulation

The general class of problem that is of interest is modeled after an airfoil gust interaction model. For this

purpose, we consider an upstream gust that interacts with an airfoil which is in a uniform subsonic flow at

infinity. We construct a Kirchhoff surface which surrounds the flow region in the near-field. The surface will

be referred to as C and the exterior of the surface asX. For now, our only assumption is that C is smooth and
is far enough away from the airfoil so that the mean flow quantities inX differ only very slightly from the free
stream. This allows us to linearize the continuity and momentum equations about the freestream flow using

U ¼ U1 þ ûu; ð1Þ

q ¼ q1 þ q̂q; ð2Þ

p ¼ p1 þ p̂p; ð3Þ

where 1 subscripts indicate freestream quantities. These decompositions lead to the linearized continuity

and momentum equations in X:

D1q̂q
Dt

þ q1$ � ûu ¼ 0; ð4Þ

q1
D1ûu

Dt
þ $p̂p ¼ 0; ð5Þ

where D1=Dt � o=ot þ U1 � o=ox. Taking D1=Dt of Eq. (4) and applying the div operator to Eq. (5) gives

D21q̂q
Dt2

þ q1
D1

Dt
ð$ � ûuÞ ¼ 0; ð6Þ
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q1
D1

Dt
ð$ � ûuÞ þ $2p̂p ¼ 0: ð7Þ

To eliminate ûu from the above equations, we subtract Eq. (7) from Eq. (6) and obtain

D21q̂q
Dt2

¼ $2p̂p: ð8Þ

The state equations relating p and q are

p ¼ Aqc;
op
oq

¼ c21 ðc ¼ 1:4 for standard airÞ; ð9Þ

where A is a constant. Combining these with the linearizations in Eqs. (2) and (3) gives the relation

p̂p ¼ c21q̂q: ð10Þ

Substituting Eq. (10) into Eq. (8) gives

1

c21

D21p̂p
Dt2

¼ $2p̂p; ð11Þ

which reduces the problem to one dependent variable only, namely p̂p. After non-dimensionalizing appro-
priately the linearized continuity and momentum equations reduce to

o

ot

�
þM1

o

ox

�2
p̂p ¼ $2p̂p: ð12Þ

3. Problem statement

From this point, all quantities are assumed to be non-dimensional. To setup the problem, we begin with

Eq. (12)

o

ot

�
þM1

o

ox

�2
p̂p ¼ $2p̂p in X; ð13Þ

where X is the unbounded domain exterior to the Kirchhoff surface C. We restrict our attention to two-
dimensional acoustic disturbances p̂p ¼ p̂pðx; y; tÞ. On the Kirchhoff surface C,

p̂pðx; y; tÞ ¼ f̂f ðx; y; tÞ: ð14Þ

The initial conditions are

p̂pðx; y; 0Þ ¼ 0;

p̂ptðx; y; 0Þ ¼ 0:

In addition p̂pðx; y; tÞ satisfies the raditation condition as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 1.
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Now we convert the problem to the transformed domain by taking the Laplace transform of Eq. (12).

This yields

s
�

þM1
o

ox

�2
~pp ¼ $2~pp; ð15Þ

where ~ppðx; y; sÞ is the Laplace transform of p̂pðx; y; tÞ. Now, this equation can be further reduced via the
transformation

~pp ¼ ekx �pp with k ¼ M1s
1	M2

1
: ð16Þ

Finally scaling x and y as

x ¼ ð1	M2
1Þ�xx; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	M2

1

q
�yy; ð17Þ

the reduced wave equation becomes

$2 �pp ¼ s2 �pp: ð18Þ

This is a Helmholtz equation with imaginary wave number k ¼ is, for which potential theory (simple or
double layer potentials) applies. It should be noted that Green�s function now has to be evaluated using
complex arguments. This is easily accomplished by the formulas found in [22]. Thus in essence, the problem

can be solved for each fixed s, the independent variable introduced by the Laplace transform. To realize
these results in the time domain, as mentioned before, we borrow results known in the electrical engineering
literature. Note that in this transformation process the Kirchhoff surface C is transformed to �CC, and the
exterior domain X is transformed to �XX (see [18]). After application of the Laplace transform and the

transformation of the dependent variable, the pressure on the Kirchhoff surface f̂f ðx; y; tÞ becomes
�ff ð�xx; �yy; sÞ ¼ ~ff ðx; y; sÞe	kx.

4. Double layer potentials

Now given the Kirchhoff surface �CC and the evaluated pressure in the frequency domain from an interior
solver on this surface, interpolated from another code such as an Euler Solver, one can use a double layer

potential to determine the far-field acoustic pressure in the frequency domain. Given the pressure �pp ¼ �ff on
the Kirchhoff surface �CC (see Fig. 1)

�ppð�xxÞ ¼
Z
�CC

�llð�nnÞ oGfð�xx j
�nnÞ

on�nn
ds�nn; �xx 2 �XX; �nn 2 �CC; ð19Þ

where Gf is the free space Green�s function given by

Gfð�xx j�nnÞ ¼ 	 i
4
H ð1Þ
0 ðkj�xx	 �nnjÞ with k ¼ is: ð20Þ

Moreover, �pp satisfies the radiation condition

�pp � e
ikRffiffiffi
R

p as j�xxj ! 1 with R ¼ j�xx	 �nnj; ð21Þ

while �pp ¼ �ff ð�xxÞ on the boundary �CC. In the expression for the double layer potential, the quantity �llð�xxÞ
represents the potential density associated with the value of the pressure on the Kirchhoff surface.
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On the boundary �CC, the double layer potential can be represented as an integral equation of the second
kind

	 1
2
�llð�xxÞ þ

Z
�CC

�llð�nnÞ oGfð�xx j
�nnÞ

on�nn
ds�nn ¼ �ff ð�xxÞ; �xx; �nn 2 �CC: ð22Þ

Upon parameterization with arc-length variable �xx ¼ �xxðlÞ, we find that the integral equation reduces to

	 1
2
�llðlÞ þ

Z L

0

Kðl; sÞ�llðsÞds ¼ �ff ðlÞ; 06 l < L; ð23Þ

where �llðlÞ � �llð�xxðlÞÞ, �ff ðlÞ � �ff ð�xxðlÞÞ, and

Kðl; sÞ ¼ 	 i
4
kH ð1Þ0

0 ðkdðl; sÞÞ
	�yy 0ðsÞ �xxðlÞ 	 �xxðsÞ

� �
þ �xx0ðsÞ �yyðlÞ 	 �yyðsÞ

� �
dðl; sÞ : ð24Þ

In this expression dðl; sÞ is the Euclidean distance between �xxðlÞ and �xxðsÞ, that is,

dðl; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xxðlÞ 	 �xxðsÞ
� �2

þ �yyðlÞ 	 �yyðsÞ
� �2r

:

In contrast to the simple layer potential, the kernel in this equation has no singularity. Near the origin the

Hankel function has a logarithmic singularity, so that as �xx approaches �nn along the Kirchhoff surface, using
local Taylor expansions in Eq. (24), one can show

lim
l!s

Kðl; sÞ ¼ jðlÞ
4p

; ð25Þ

where j is the curvature of the boundary given by

jðlÞ ¼ �xx0ðlÞ�yy 00ðlÞ 	 �yy0ðlÞ�xx00ðlÞ:

Fig. 1. The far-field pressure can be determined given the pressure on �CC.
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Computationally, it is more convenient to work with a polar representation of the domain. Representing

the Kirchhoff surface by �rr ¼ �rrð�hhÞ, assuming the boundary is convex shaped, we have

ð�xxðlð�hhÞÞ; �yyðlð�hhÞÞÞ ¼ ð�rrð�hhÞ cos �hh; �rrð�hhÞ sin �hhÞ;
ð�xxðlð �//ÞÞ; �yyðlð �//ÞÞÞ ¼ ð�rrð �//Þ cos �//; �rrð �//Þ sin �//Þ:

We identify J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rrÞ2 þ ð�rr0Þ2

q
as the dilation factor and

dð�hh; �//Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rr2ð�hhÞ 	 2�rrð�hhÞ�rrð �//Þ cosð�hh 	 �//Þ þ �rr2ð �//Þ

q
:

With the use of polar coordinates, the kernel becomes

Kð�hh; �//Þ ¼ ik
4
H ð1Þ
1 ðkdð�hh; �//ÞÞ

�GGð�hh; �//Þ
dð�hh; �//Þ

; ð26Þ

where

�GGðh;/Þ ¼ �rrð�hhÞ�rr0ð �//Þ sinð�hh 	 �//Þ 	 �rrð�hhÞ�rrð �//Þ cosð�hh 	 �//Þ þ �rr2ð �//Þ
Jð �//Þ

;

and when �hh ¼ �//, the kernel reduces to

Kð�hh; �hhÞ ¼ 1

4p

�rr2ð�hhÞ 	 2�rrð�hhÞ�rr0ð�hhÞ sin 2�hh þ 2�rr02ð�hhÞ cosð2�hhÞ 	 �rrð�hhÞ�rr00ð�hhÞ
� �

J 3ð�hhÞ
:

Therefore, the integral equation that determines the potential density on the boundary, Eq. (23), becomes

	 1
2
�llð�hhÞ þ

Z 2p

0

Kð�hh; �//ÞJð �//Þ �llð �//Þd �// ¼ �ff ð�hhÞ; 06 �hh < 2p: ð27Þ

5. Numerical considerations

Solution of the above-described problem entails solving Eq. (27), an integral equation of the second

kind, to determine �llð�yyÞ for �yy 2 �CC. We solve the integral equation, Eq. (27), by a rectangular quadrature
rule. To do so we divide the angular variables into nh equal intervals as follows:

�hhi ¼ ði	 1Þh; i ¼ 1; 2; . . . ; nh;

�//j ¼ ðj	 1Þh; j ¼ 1; 2; . . . ; nh;

with h ¼ 2p=nh. Then the discrete form of Eq. (27) becomes

	 1
2
�lli þ h

Xnh
j¼1

Kð�hhi; �//jÞJð �//jÞ�llj ¼ �ff ð�hhiÞ;

or compactly�
	 1
2
I þ hK

�
�ll ¼ �ff ;
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where

Kij ¼ Kð�hhi; �//jÞJð �//jÞ; �lli ¼ �llð�hhiÞ; �ffi ¼ �ff ð�hhiÞ:

This algebraic system can be solved by several computational techniques. Formally

�ll ¼
�
	 1
2
I þ hK

�	1
�ff :

Once �llð�nn; sÞ is known, the pressure �ppð�xx; sÞ throughout the region �xx 2 X may be determined from Eq. (19).
To calculate pð�xx; tÞ, this is followed by a Laplace inversion, and an inversion of the transformation de-
scribed in Eqs. (16) and (17).

6. Time-domain inversion techniques

Let f ðtÞ be a real function of t, with f ðtÞ ¼ 0 for t < 0; the Laplace transform pair is defined as follows:

F ðsÞ ¼
Z 1

0

e	stf ðtÞdt; s ¼ aþ ix; ð28Þ

f ðtÞ ¼ 1

2pi

Z aþi1

a	i1
estF ðsÞds; ð29Þ

where a is arbitrary, but is greater than the real parts of all singularities of the image function F ðsÞ.
Generally speaking, we want to reconstruct a time-dependent function f ðx; tÞ from its image F̂F ðx; sÞ, where
x denotes the spatial dependence. For any physical system, if there exists no exponentially growing com-
ponent, all the poles should locate at the left half (including the imaginary axis) of the s-plane. Thus, in the
following discussion, we assume that a > 0. Even when the image function is given in analytical form, the
direct evaluation of Eq. (29) is extremely difficult (except for those that can be found in the Laplace
transform tables). Therefore, we pursue a numerical procedure. While there are several different methods

available [10], the Fourier series method is well-established, due to the methods to determine ‘‘optimal’’

parameters, given in [16].

We begin with a discussion on the trigonometric integral representation of the inversion formula. Eq.

(28) can be expanded into

F ðsÞ ¼
Z 1

0

e	atf ðtÞ cosxtdt 	 i
Z 1

0

e	atf ðtÞ sinxtdt;

¼ R F ðaf þ ixÞg þ iI F ðaf þ ixÞg;

where s ¼ aþ ix. In turn, Eq. (29) is expanded into

f ðtÞ ¼ e
at

2p

Z 1

	1
R F ðafð þ ixÞg cosxt 	 I F ðaf þ ixÞg sinxtÞdx

þ i e
at

2p

Z 1

	1
I F ðafð þ ixÞg cosxt þ R F ðaf þ ixÞg sinxtÞdx: ð30Þ

From Eq. (28), we see that F ðsÞ ¼ F ðsÞ, because f ðtÞ is a real function. This condition is equivalent to

RfF ða	 ixÞg þ iIfF ða	 ixÞg ¼ RfF ðaþ ixÞg 	 iIfF ðaþ ixÞg:
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Thus, RfF ðaþ ixÞg is even and IfF ðaþ ixÞg is an odd function of x. This allows one to reduce the in-
finite integral to a semi-infinite representation

f ðtÞ ¼ e
at

p

Z 1

0

RfF ðað þ ixÞg cosxt 	 IfF ðaþ ixÞg sinxtÞdx: ð31Þ

The Fourier series approximation of Eq. (31), presented by Dubner and Abate [15], is obtained by right

Riemann sums, and is given by

f ðtÞ ’ e
at

T

"
	 1
2
RfF ðaÞg þ

X1
k¼0

R F a
��

þ kpi
T

��
cos

kpt
T

� �
	
X1
k¼0

I F a
��

þ kpi
T

��
sin

kpt
T

� �#

ð32Þ

with a discretization error

EDða; t; T Þ ¼
X1
n¼1
e	2nTa f ð2nT½ þ tÞ�: ð33Þ

As the infinite series given in Eq. (32) can only be summed up to N terms, there occurs a truncation
error

ETðN ; a; t; T Þ ¼
eat

T

X1
k¼Nþ1

R F a
��"

þ kpi
T

��
cos

kpt
T

� �
	
X1
k¼Nþ1

I F a
��

þ kpi
T

��
sin

kpt
T

� �#
: ð34Þ

Finally, the approximate value of f ðtÞ is

f ðtÞ ’ e
at

T

"
	 1
2
RfF ðaÞg þ

XN
k¼0

R F a
��

þ kpi
T

��
cos

kpt
T

� �
	
XN
k¼0

I F a
��

þ kpi
T

��
sin

kpt
T

� �#
:

ð35Þ

The accuracy of Eq. (35) depends on the choice of the free parameters ðN ; a; T Þ. The essence of this method
is that one can reduce the errors for any fixed ðN ; T Þ by choosing a > 0 appropriately. Honig and Hirdes
[16] have presented two definitions for such an ‘‘optimal’’ a. For any fixed ðN ; T Þ, the parameter a is optimal
if (A) the absolute values of the discretization error, Eq. (33) and the truncation error Eq. (34) are equal;

and (B) the sum of the absolute values of the discretization and truncation error is minimal.
We first consider case (A). One can write the truncation error ET in the form

ETðN ; a; t; T Þ ¼
eat

T
RðNÞ;

where

RðNÞ ¼
X1
k¼Nþ1

R F a
��

þ kpi
T

��
cos

kpt
T

� �
	 I F a

��
þ kpi
T

��
sin

kpt
T

� �
:

The approximate value for f ðtÞ is

fN ðtÞ ’ f ðtÞ 	 e
at

T
RðNÞ þOðe	2aT Þ:
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To calculate RðNÞ, we choose two parameters a1 and a2 large, with a1 6¼ a2. Then

f 1N ðtÞ 	 f 2NðtÞ ’
RðNÞ
T

ea2tð 	 ea1tÞ;

or

RðNÞ ’ T
f 1N ðtÞ 	 f 2N ðtÞ
ea2t 	 ea1t :

Also write the discretization error ED in the form

EDða; t; T Þ ¼ e	2aT f ð2T þ tÞ þOðe	4aT Þ;
and we find

aiopt ’ 	 1

2T þ t ln
RðNÞ

TfNð2T þ tÞ

����
����:

Now consider case (B), which requires that

o

oa
eat

T
RðN ; aÞj j

�
þ EDða; t; T Þj j

�
a¼aBopt

¼ 0:

This can be evaluated by an iterative procedure

ojRðN ; aðiÞÞj
oa

’ RðN ; aði	1ÞÞ 	 RðN ; aði	1Þ1 Þ
aði	1Þ 	 aði	1Þ1

; i ¼ 1; . . . ; n;

að0Þ ¼ aAopt; a
ð0Þ
1 ¼ a1; a

ðiÞ
1 ¼ aði	1Þ; i ¼ 1; . . . ; n;

aðiÞ ¼ 	 1

2T þ t ln
ojRðN ;aðiÞÞj

oa þ jRðN ; aðiÞÞjt
2T 2jfN ð2T þ tÞj

" #
; i ¼ 1; . . . ; n;

aBopt ¼ aðnÞ:

One obvious advantage in this formulation is that s-values are known before the numerical inversion is
performed. This is very important when a closed form solution is not available for the physical problem of

interest. The numerical methods have to be adopted to solve differential or integral equations and the s-
values are given by

sk ¼ aþ kpi
T

; k ¼ 0; . . . ;N :

The above method has been successfully used to reconstruct time-dependent functions f ðtÞ, including the
step function, from the associated close-formed image functions [15]. Toward applications, [17] reported

results to one- and two-dimensional transient heat conduction problems in which finite-difference and finite

element methods were invoked to solve transformed differential equations, but the authors did not provide

guidance to choose optimal parameters when the unknown function is spatially dependent. We fill this gap

with the ideas indicated above and extend the applications to CAA problems.

In summary, we have developed a solution procedure for the time-domain far-field sound propagation,
based on potential theory and using the Laplace transform and its inverse. We believe this is a powerful

method and an attractive alternative to the conventional CAA methods. The possible applications are
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numerous. The method incorporates arbitrary geometries of the Kirchhoff surfaces and in this aspect is

ideal for jet noise problems, in which the computational domains are typically narrow and long. Further, it

has exact far-field behavior built-in. As a result, it avoids challenging issues such as accurate absorbing

boundary conditions and their complex implementations, etc. Finally, the formulations can be extended to

three dimensions, though much work and ideas are still needed.

7. Numerical Laplace transform

The first step in the solution procedure is the determination of the Laplace transform of the boundary

data which are provided at discrete time intervals Dt over the time period T ¼ NDtDt, where NDt is the

number of samples. Thus, the Laplace transform given in Eq. (28) must be evaluated numerically at the

frequencies of interest. With boundary data given as a discrete function of time

f ðrm; hl; tÞ � f ðrm; hl; tjÞ;

where tj ¼ jDt, the Laplace transform

F ðhl; sÞ ¼
Z 1

0

e	stf ðhl; tÞdt;

is integrated numerically using Simpson�s 1/3 with an even number of panels and NDt odd, so that

F ðhl; skÞ �
T
3NDt

f ðhl; t0Þ
 

þ 4
XNDt	1

j¼1;3;5
e	sk tj f ðhl; tjÞ þ 2

XNDt	2

j¼2;4;6
e	sk tj f ðhl; tjÞ þ f ðhl; tNDtÞ

!
;

where sk ¼ aþ iðkp=T Þ. The approximation will hold given an adequately small time interval and if, for
j > NDt, f ðhl; tjÞ � 0. As outlined above, the optimum value of a is determined through an iterative pro-
cedure. For each iteration, a new value of a is determined, and the Laplace transform must be recalculated
from the original time series.

8. Results

In this section, the effectiveness of the TPT technique will be demonstrated for a two-dimensional far-field

acoustic radiation problem. The acoustic pressure is specified on a circular boundary that through the ap-
plication of the transformations described in Section 2 becomes an ellipse. Interior to this ellipse the acoustic

field must be determined using an appropriate linear or nonlinear direct numerical simulation that is beyond

the scope of this paper. The purpose of this research is to demonstrate that given the acoustic pressure on the

specified boundary, the ensuing far-field sound can be efficiently calculated in the unbounded exterior domain.

The most common alternative solution procedure is the recalculation or extension of the direct numerical

simulation, which can be prohibitive in terms of computational time and memory requirements.

To assess the accuracy and the efficiency of the TPT solution technique, comparisons are made to a

direct numerical solution procedure with far-field radiation boundary conditions of arbitrary order de-
veloped by Hagstrom and Hariharan [21]. The direct numerical simulation code uses a second order central

difference, however, boundary conditions are treated to the desired order accuracy. Hence it has no other a

priori errors other than discretization errors. A 20th order boundary condition will be implemented in the

DNS solutions shown herein.

On the physical boundary r ¼ 1, the acoustic pressure is specified as

pð1; h; tÞ ¼ e	t 1ð 	 cos tÞ cosðmhÞ: ð36Þ
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Here m is modal number that indicates the dominant angular dependence on the boundary. In general this
data could be represented by a general Fourier series with time-dependent coefficients. In the unbounded

exterior domain, the convective wave equation is solved subject to an acoustic radiation condition.

It should be noted that even though the physical problem is posed exterior to a circle, the problem in the

Laplace transform domain requires transformations to both the acoustic pressure and the spatial coordi-

nates. In this process, the circular boundary maps to an ellipse (see Fig. 2), and as the Mach number in-

creases, the eccentricity of the ellipse increases. The transformations are summarized by

�pp ¼ ~ppe	ksx; �xx ¼ x
1	M2

; �yy ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	M2

p :

These transformations map the boundary defined by the circle of radius 1 to the ellipse

1
�

	M2
�2
�xx2 þ 1

�
	M2

�
�yy2 ¼ 1:

Moreover, the polar representation of the boundary that is required by the integral equation procedure

takes the form

rð�hhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1	M2Þ2 cos2 �hh þ ð1	M2Þ sin2 �hh

s
:

From this r0ð�hhÞ and r00ð�hhÞ are calculated for the various components of the assembly of the kernel of the
integral equation.

Using the numerical Laplace transform techniques outlined above, the Laplace transform of the acoustic

pressure on the boundary was determined in 13 s with the optimal value of aopt ¼ 0:0209 for N ¼ 100 and
T ¼ 20. Changing either N or T will yield a different value for aopt.

8.1. Freestream Mach number M ¼ 0

Our first result illustrates the propagation of acoustic waves in a domain 1 < r < 3 for vanishing Mach
number, that isM ¼ 0. For this case, the convective wave equation reduces to a regular wave equation. TPT

Fig. 2. Kirchhoff surface for the test problem M ¼ 0:4.
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solutions are shown in Fig. 3 at a location ð3; 0Þ for 0 < t < 20. The TPT solution is dependent on two
parameters:

1. The number of points on the boundary nh for the discretization of the boundary integral, referred in

the graph as the angular resolution.

2. The number of terms N in the inverse Laplace transform referred in the graph as the frequency res-
olution.

Fig. 3(a) shows the time history of the acoustic pressure at ðr; hÞ ¼ ð3; 0Þ over 0 < t < 20. At this scale,
differences between the solutions are minimal. However, Fig. 3(b) shows a small portion of the time history
where the differences between each solution are more apparent. Increasing the angular resolution nh or the

frequency resolution N improved the solution at some expense in computational time. Little difference is
seen between nh ¼ 300 and nh ¼ 500. Thus, the parameters nh ¼ 300 and N ¼ 100 gave an acceptable so-
lution with the minimum computational effort. These parameters are used for the remainder of the com-

putations shown. Fig. 4 directly compares the most efficient TPT solution (nh ¼ 300 and N ¼ 100) with the
direct numerical simulation. In Fig. 5, contour plots compare the solutions at h ¼ 0 and h ¼ p over
06 r6 3 is shown. As illustrated in the figures, agreement is evident.
The computational efficiency of the TPT method versus the direct numerical simulations is illustrated in

Fig. 6. It should be noted that the solution domain for the direct numerical simulation was 1 < r < 3. This
was only possible due to the higher order boundary condition (order 20) within the code. If the solution is

to be computed in a larger domain, the computational time and the required number of grid points for the

direct simulation will be substantially increased from the current calculations. On the other hand, given the

potential density the determination of the pressure at another location simply requires evaluation of

Eq. (19) and the application of the inverse Laplace transform, given in Eq. (35). Therefore, as the size of

the domain is increased the ratio of the timings between the TPT and the DNS will increase substantially.

8.2. Freestream Mach number M ¼ 0:4

Our second result illustrates the propagation of the disturbance from r ¼ 1 for Mach number M ¼ 0:4
over the interval 0 < t < 20 on an extended domain 1 < r < 10. The increase in freestream Mach number
and the size of the domain will both substantially increase the time required to calculate the direct nu-

merical simulation, and the efficiency of the TPT technique will become more apparent. The forcing

function pð1; h; tÞ remains identical to the M ¼ 0 case considered above. The direct simulation was per-

(a) (b)

Fig. 3. Time history of the acoustic response for M ¼ 0 at ð3; 0Þ. (a) Acoustic response over the entire interval 0 < t < 20. (b) Detail of
the acoustic response.
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formed in the annular domain 1 < r < 10 using 20th-order far-field boundary conditions and a grid size
increased to 2700� 201 to maintain resolution. The accuracy of the TPT technique is independent of the
size of the domain, so nh ¼ 300 points on the interior boundary and N ¼ 100 terms in the inverse Laplace
transform with aopt ¼ 0:0209 were used.

Fig. 4. Comparison of TPT with direct numerical simulation for M ¼ 0.

Fig. 5. Comparison of contours between the TPT and DNS for M ¼ 0.
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The pressure on the boundary is transformed into the Laplace domain and used to determine the double

layer potential density. Fig. 7 shows the real and imaginary parts of the double layer potential density as a

function of the frequency and angular position. The double layer potential density is then used to determine

the far-field frequency domain pressure, as seen in Fig. 8. Finally, the far-field pressure is transformed back

into the time domain, shown in Fig. 9. Recall that the TPT technique is meshless and the pressure need only

be calculated at the point or points of interest.

Time slices show the wave propagation in the annulus of computation in Fig. 10. Note that the prop-
agation speeds are retarded in the upstream direction (1	M ¼ 0:6) and accelerated (1þM ¼ 1:4) in the
downstream direction. Finally, pressure contours for the M ¼ 0:40 large domain case 1 < r < 10 are shown
in Figs. 11(a) and (b), where the contours are plotted on a grid with 54 points along the x-axis. Excellent
agreement is again seen between the methods.

Fig. 6. Computational efficiency: M ¼ 0, 1 < r < 3.

(a) (b)

Fig. 7. Double layer potential density with M ¼ 0:4. (a) Real part of the double layer potential density l. (b) Imaginary part of the
double layer potential density l.
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The computational efficiency of the TPT technique is summarized in Fig. 12. Direct simulation over the

entire annular domain 1 < r < 10 required 313 min. The TPT method required 1.1 and 1.3 min to generate
the solutions shown in Figs. 9 and 11(a), respectively.

9. Discussion and conclusions

The transform/potential theoretic (TPT) technique has been developed for calculating far-field sound

propagation into an acoustic medium from time-dependent pressure on a Kirchhoff surface in the presence

of mean flow. In particular, double layer potential theory in combination with Laplace transform tech-

niques are used to develop a semi-analytical method which is computationally efficient and moreover has

Fig. 8. Far-field acoustic pressure in the frequency domain M ¼ 0:4 at h ¼ 0 and r ¼ 3.

Fig. 9. Acoustic response with M ¼ 0:40. The time history of the pressure response is shown at ðr; hÞ ¼ ð10; 0Þ.
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exact far-field radiation conditions built in to the formulation. As illustrated in the two-dimensional test

problems, this method leads to solutions which compare well with existing results, while requiring com-

putational resources several orders of magnitude below direct simulations.

As presented in this paper, this technique is restricted to the solution of linear acoustics with uniform
mean flow. However, one can imagine a perturbative approach in which this technique is used for the

solution of variational problems at increasing order of approximation for more complicated problems. In

addition, one can pursue the extension of this method to three-dimensional acoustic problems.

Fig. 10. Wave propagation in the annulus of computation: M ¼ 0:40.
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